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Resolution in Time of Two Electrophoretic Peaks 

JAUME MASOLIVER 
DEPARTEMENT DE FISICA FONAMENTAL 
UNIVERSITAT DE BARCELONA 
DIAGONAL 647,08028-BARCELONA, SPAIN 

GEORGE H. WEISS 
DIVISION OF COMPUTER RESEARCH AND TECHNOLOGY 
NATIONAL INSTITUTES OF HEALTH 
BETHESDA, MARYLAND 20892, USA 

ABSTRACT 

The question of whether a gel gradient can improve the resolvability of two 
peaks by means of gel electrophoresis is studied. The criterion used is the time 
to a specific resolution, defined as the time to the appearance of a minimum in 
the concentration profile between the peaks. Although the analysis is phrased in 
terms of gel electrophoresis, it is more generally applicable to other separation 
techniques. 

INTRODUCTION 

Most measures of the degree of resolution of two peaks in chromato- 
graphic or electrophoretic separation systems combine the effects of mo- 
bility and band spreading in the definition of a single resolution parameter. 
One commonly used parameter is 

R = AX/(U~ + uZ) (1)  
where AX is the peak separation, and ui the width of peak i, i = 1, 2. 
The resolution parameter can be used to optimize the design of columns 
for separating components of a given mixture by presetting the desired 
value of R .  The use of R as just defined is deficient in not accounting for 
the possibility of unequal peak heights. 

31 9 

Copyright 0 1996 by Marcel Dekker, Inc. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
5
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



320 MASOLIVER AND WElSS 

A particularly important set of applications of electrophoretic analysis 
is to the separation of DNA fragments with different numbers of base 
pairs. In a recent paper Aldroubi and Garner suggested a resolution param- 
eter for such applications which essentially measures the time to the ap- 
pearance of a minimum between two peaks in the observed concentration 
profile (1). The theory in their analysis requires that the polymer or gel 
concentration be uniform. In the absence of possible nonlinear effects, 
this implies that the shape of each peak remains Gaussian at all times. This 
assumption permits one to calculate a resolution parameter, R, , which 
depends on the two mobilities, the bandwidths and relative concentrations 
of the two species. As well as answering an important design question 
related to a widely used separation technique, the Aldroubi-Garner ap- 
proach also overcomes the difficulty inherent in Eq. (1) in not including 
the concentrations. 

In the present paper we extend the Aldroubi-Garner analysis to deal 
with the time to resolve two peaks in a nonuniform gel, in which the 
diffusion coefficient of species i( = 1,Z) is Di(x )  and the velocity parameter 
is vi(x). While it is not usually possible to find an exact solution to the 
equations describing peak spreading and migration in such gels, it is possi- 
ble to find quite accurate approximations to the solutions when diffusive 
effects are much smaller than those of migration. This is generally the 
case in electrophoretic systems, and especially so in gel electrophoresis. 

DERIVATION OF AN APPROXIMATE SOLUTION 

We make explicit the assumption of small diffusive effects by expressing 
the diffusion coefficient as cDi(x)  where DAx) gives the analytic form of 
the diffusion coefficient and E is a small dimensionless parameter. A basic 
assumption in our analysis is that D;(x )  and ui(x)  are approximately of 
the same order of magnitude and that E sets the scale for a perturbation 
analysis. Let c i (x , t )  denote the concentration of species i at x at time t .  
These functions satisfy the equations 

In electrophoretic measurements the velocity v i ( x )  is the product of the 
mobility and the applied electrical field. An approximate solution to Eq. 
(2) can be found when the initial conditions are 

Cl(X,O) = C I W ) ,  c2(x,0) = C 2 W )  (3) 
in which c1 and c2 are constants which measure the relative amount of 
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RESOLUTION IN TIME OF TWO ELECTROPHORETIC PEAKS 321 

each species. The set of initial conditions in Eq. (3) is equivalent to the 
one used in the analysis by Aldroubi and Garner in Ref. 1. 

In practical systems the order of magnitude of the dimensionless param- 
eter e is of the order of lop3 or less. This permits the use of a singular 
perturbation expansion for the solution, of which only the lowest order 
term will be considered. The perturbation expansion to be used will be 
based on one developed by van Kampen (2-4), although there are other 
approaches available as mentioned in Ref. 4. In any electrophoretic mea- 
surement of a two-peak system, the observed concentration at a point is 
equal to c(x,t), which is the sum 

c (xA  = C l ( X , t )  + cz(x,t) (4) 

We seek an estimate of the time at which a minimum first appears between 
the two peaks. Because of the difficulty in solving Eq. (2), this can only 
be done approximately. 

The method suggested by van Kampen for approximating to the solution 
of Eq. (2) is to change the spatial variable to a new one based on the 
solution to the diffusion-free approximation to that equation, i.e., one 
sets E = 0. In following this approach we let X J t )  be the solution to the 
equation 

B = v; (X) ,  i = 1 ,  2 ( 5 )  

and define rescaled spatial variables y i  by 

x - X j ( t )  i =  1 , 2  4 ’  Yi = 

The introduction of these variables has the effect of eliminating the param- 
eter E from the first term on the right-hand side of Eq. (2). The lowest 
order of approximation to Eq. (2) is then found to be (2) 

in which 

9l;(t) = D [ X ; ( f ) ] ,  w;( t )  = - 2 l x = x i ( r )  
Equation (7) is an Ornstein-Uhlenbeck equation which can be solved 

by taking a Fourier transform with respect to yi. A derivation of the solu- 
tion to Eq. (7) is given in Ref. 4. The result is 
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322 MASOLIVER AND WEISS 

which indicates that the broadening around the diffusion-free solution at 
sufficiently early times is approximately described by a Gaussian. In the 
lowest order the maximum concentration is located at a position found 
by neglecting diffusive effects, i.e., it is at X i ( t ) .  The time-dependent func- 
tion that describes the development of peak broadening is found from 

a:(t) = 2 lo‘ %i(T)  exp(2 I,‘ wi(b)de) d7 (10) 

Thus we see that the basic shape of the peak is Gaussian, at least at 
sufficiently short times. At longer times the peak shape will change to a 
form which is specific to the form of the gel gradient. A more involved 
analysis is required to calculate correction terms to Eq. (9) but we here 
deal only with consequences implied by the Gaussian term in Eq. (9). The 
important feature that emerges from the analysis is that both the position 
of the peak, X i ( t ) ,  and uf(t) are, in general, no longer proportional to t ,  
as is the case for a uniform gel. This allows for the possibility that a slowing 
in the motion of the peak due to the gel gradient might be compensated for 
by a decrease in the peak width. It is this issue which will be addressed 
in the following section, in the context of a particular example. 

IMPLICATIONS OF THE SOLUTION FOR RESOLVING 
POWER 

A generic figure indicating the form of the total concentration profile 
at a given time is shown in Fig. 1 ,  with h,i,(t) being the concentration at 
the interpeak minimum and H,,(t) the concentration of the lower of the 
two peaks. At this point we describe our generalization of the analysis of 
Aldroubi and Garner which is made possible by the fact that Eq. (9) is 
approximately a Gaussian, just as in the absence of a gradient. The first 
step in the analysis is to define the function p ( t )  = HmaX(t)/hmi,,(r) which 
measures the extent of resolution. Two peaks will be said to be resolved 
at time r if p ( t )  > 1 .  We further define umax(t) to be the larger of ul(t) 
and az(t ) ,  and the function a as the smaller of the two ratios cI/c2 and 
cz/cI. Finally, we define the resolution function R ( t )  by 

Aldroubi and Garner have shown that R ( t )  is a lower bound for p( r), which 
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RESOLUTION IN TIME OF TWO ELECTROPHORETIC PEAKS 323 

FIG. 1 A concentration profile with two peaks, showing the definition of h,i,(t) and 
HIIlax(2). 

is to say that 

P(t) 2 “1 (12) 

The desired resolution occurs at a time t, which is found as the solution 
to the equation 

R(t,) = 1 (13) 
The results found by Aldroubi and Garner correspond to setting X i ( x )  = 
piEt,  where pi is a constant mobility, E is the field strength, and at the 
same time setting a$,(t) = 2DmaxtY where DmaX is the greater of the two 
diffusion constants D1 and D2. 

As an example of our formalism applied to a case which is not otherwise 
generally solvable, we examine the implications of a linear gel gradient 
for which the analytic forms for the diffusion and velocity functions are 

Di(x )  = Di exp( -Xix) and v i (x )  = p iE  exp( -qix), i = 1 ,  2 

(14) 

where Di and ki are the diffusion constants and mobilities at zero gel 
concentration, respectively, E is the applied field, and Xi and qi character- 
ize the effect of the gradient. The results of Aldroubi and Garner are 
recovered by setting X i  = -qi = 0. The model defined by Eq. (14) general- 
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324 MASOLIVER AND WEISS 

izes an ansatz made by Rodbard and Chrambach (9, although an addi- 
tional assumption was made that hi = qi. An exact solution to Eq. (2) 
can be found for that special case (6). 

Two steps are required in the application of our formalism. The first is 
to calculate the functions XI ( t )  and X2(t) that appear in Eq. (1 l ) ,  and the 
second is to calculate urn&). Equation (5)  for the choice of v i ( x )  in Eq. 
(14) is 

X =  pi^ exp(-qiX) (15) 

This is readily solved for the Xi(t): 

1 
Ili 

Xi(r) = - ln(1 + piEqit)  (16) 

The next step is to calculate the quantities 5Bj(7) and wi(t)  that appear in 
the integrand of the expression for u?(r) as indicated in Eq. (10). In the 
present model these are found to have the forms 

These are sufficiently simple so that the integral in Eq. (10) can be evalu- 
ated in closed form. Let mi = hi/qi. The expression for u?( t )  is then found 
to be 

It is easily verified that in the limit piEqit-+O, this reduces to the standard 
result d ( t )  = 2Dit. 

The results in Eqs. (16) and (18) are useful in suggesting that there are 
choices of parameters for which the use of a gel gradient for the model 
defined by Eq. (14) can yield a better resolution than that found in the 
absence of a gradient. For this purpose we must compare values of the 
resolution function R ( t )  both with and without the gradient, since, as is 
shown in Ref. 1 ,  the separation time is proportional to the logarithm of 
the resolution factor. A further consideration is that one can only assume 
that the theoretical results will be valid at short times (in dimensionless 
units) since the van Kampen approximation is only accurate at short times 
(4). Consequently we first examine the behavior of the exponent that 
appears in Eq. (11) in the short-time limit. For definiteness we will take 
umax(r) = ul(t) and define a dimensionless time T by 

= plEqlt (1% 
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RESOLUTION IN TIME OF TWO ELECTROPHORETIC PEAKS 325 

so that by short times we will mean that T is small in comparison to 1 .  
Hence the term that appears in the numerator of the exponent in Eq. (1 1) 
is 

to lowest order in T. The term outside of the brackets is the diffusion-free 
result, and the bracketed terms are corrections to this result due to the 
nonuniform gel gradient. The analogous expansion of &,,(t) as obtained 
from Eq. (18) is 

It therefore follows that at short times the exponent in Eq. ( l l ) ,  which 
for convenience we denote by U ( t ) ,  can be expanded around the value 
found in the absence of a gradient, Uo(t ) ,  as 

} 7 + ...I (22) P h 2  - CL:q1 

CLlql(P1 - P2) 
U(t )  -'I U d t )  [l + {$ + 

where 

As a result, the resolution function will initially increase over its gradient- 
free value whenever the expression in braces in Eq. (22) is positive. This 
will certainly be true when q2 > (p:/p$)ql, which is to say that whenever 
the width of the slower peak decreases sufficiently quickly relative to 
the faster one the resolution function will increase over the zero-gradient 
value. 

We have demonstrated the possibility of increasing the resolution, 
thereby decreasing the time to peak separation through the introduction 
of a gel gradient. If the van Kampen approximation is taken seriously at 
long times (T %- l) ,  then the resolution function will also exceed its gra- 
dient-free value, which is to say, when the effect of the gradient in lessen- 
ing the amount of peak spreading is greater than its effect in slowing the 
velocity. However, this cannot true in general since the accuracy of the 
van Kampen approximation almost always decreases as afunction of time. 

In conclusion, we have demonstrated that when one measures resolu- 
tion in terms of time it is possible that a proper choice of gel gradient can 
enhance resolving power. While our mathematical development assumed 
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326 MASOLIVER AND WEISS 

a linear Ferguson plot (Eq. 14) for both diffusion and mobility, it is clear 
that the application of an approximate solution to the generalized diffusion 
equation is not restricted to such systems. Rather, the essential ingredient 
in the analysis is that band spreading is small in comparison to convection 
in an appropriately defined sense. 
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