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Resolution in Time of Two Electrophoretic Peaks
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DIAGONAL 647, 08028-BARCELONA, SPAIN

GEORGE H. WEISS

DIVISION OF COMPUTER RESEARCH AND TECHNOLOGY
NATIONAL INSTITUTES OF HEALTH

BETHESDA, MARYLAND 20892, USA

ABSTRACT

The question of whether a gel gradient can improve the resolvability of two
peaks by means of gel electrophoresis is studied. The criterion used is the time
to a specific resolution, defined as the time to the appearance of a minimum in
the concentration profile between the peaks. Although the analysis is phrased in
terms of gel electrophoresis, it is more generally applicable to other separation
techniques.

INTRODUCTION

Most measures of the degree of resolution of two peaks in chromato-
graphic or electrophoretic separation systems combine the effects of mo-
bility and band spreading in the definition of a single resolution parameter.
One commonly used parameter is

R = AX/(oy + ©3) (1

where AX is the peak separation, and o; the width of peak i, i = 1, 2.
The resolution parameter can be used to optimize the design of columns
for separating components of a given mixture by presetting the desired
value of R. The use of R as just defined is deficient in not accounting for
the possibility of unequal peak heights.
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A particularly important set of applications of electrophoretic analysis
is to the separation of DNA fragments with different numbers of base
pairs. In a recent paper Aldroubi and Garner suggested a resolution param-
eter for such applications which essentially measures the time to the ap-
pearance of a minimum between two peaks in the observed concentration
profile (1). The theory in their analysis requires that the polymer or gel
concentration be uniform. In the absence of possible nonlinear effects,
this implies that the shape of each peak remains Gaussian at all times. This
assumption permits one to calculate a resolution parameter, R,, which
depends on the two mobilities, the bandwidths and relative concentrations
of the two species. As well as answering an important design question
related to a widely used separation technique, the Aldroubi-Garner ap-
proach also overcomes the difficulty inherent in Eq. (1) in not including
the concentrations.

In the present paper we extend the Aldroubi—Garner analysis to deal
with the time to resolve two peaks in a nonuniform gel, in which the
diffusion coefficient of species i(= 1, 2) is D;(x) and the velocity parameter
is v;(x). While it is not usually possible to find an exact solution to the
equations describing peak spreading and migration in such gels, it is possi-
ble to find quite accurate approximations to the solutions when diffusive
effects are much smaller than those of migration. This is generally the
case in electrophoretic systems, and especially so in gel electrophoresis.

DERIVATION OF AN APPROXIMATE SOLUTION

We make explicit the assumption of small diffusive effects by expressing
the diffusion coefficient as €D;(x) where D;(x) gives the analytic form of
the diffusion coefficient and e is a small dimensionless parameter. A basic
assumption in our analysis is that D;(x) and v;(x) are approximately of
the same order of magnitude and that e sets the scale for a perturbation
analysis. Let ¢;(x,7) denote the concentration of species i at x at time ¢.
These functions satisfy the equations

Lol [D,.(x) ‘3—2—] - S luel, =12 @

In electrophoretic measurements the velocity v;(x) is the product of the
mobility and the applied electrical field. An approximate solution to Eq.
(2) can be found when the initial conditions are

c1(x,0) = ¢18(x), c2(x,0) = c28(x) 3

in which ¢; and ¢, are constants which measure the relative amount of
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each species. The set of initial conditions in Eq. (3) is equivalent to the
one used in the analysis by Aldroubi and Garner in Ref. 1.

In practical systems the order of magnitude of the dimensionless param-
eter e is of the order of 1072 or less. This permits the use of a singular
perturbation expansion for the solution, of which only the lowest order
term will be considered. The perturbation expansion to be used will be
based on one developed by van Kampen (2—-4), although there are other
approaches available as mentioned in Ref. 4. In any electrophoretic mea-
surement of a two-peak system, the observed concentration at a point is
equal to c(x,t), which is the sum

c(x,t) = ci(x,t) + ca(x,1) “4)

We seek an estimate of the time at which a minimum first appears between
the two peaks. Because of the difficulty in solving Eq. (2), this can only
be done approximately.

The method suggested by van Kampen for approximating to the solution
of Eq. (2) is to change the spatial variable to a new one based on the
solution to the diffusion-free approximation to that equation, i.e., one
sets e = 0. In following this approach we let X;(¢) be the solution to the
equation

X =v(X), i=12 &)
and define rescaled spatial variables y; by
yi = ’i%(” i=1,2 )

The introduction of these variables has the effect of eliminating the param-
eter e from the first term on the right-hand side of Eq. (2). The lowest
order of approximation to Eq. (2) is then found to be (2)

dc; 0%c; o(y;c;) .
T %‘(’)W ~ wi(t) _ayT, i=1,2 )
in which
d‘U,'
D:(1) = DIX«(0)], wilt) = x ®

x=X{(1)

Equation (7) is an Ornstein-Uhlenbeck equation which can be solved
by taking a Fourier transform with respect to y;. A derivation of the solu-
tion to Eq. (7) is given in Ref. 4. The result is
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B ci _(x = Xd(0)P
cilxt) = olD) ome exp[ T 2e0i(n) ] &)

which indicates that the broadening around the diffusion-free solution at
sufficiently early times is approximately described by a Gaussian. In the
lowest order the maximum concentration is located at a position found
by neglecting diffusive effects, i.e., it is at X;(1). The time-dependent func-
tion that describes the development of peak broadening is found from

t t
o2(t) = 2 f @,(r) exp<2 J w,-(g)dg) dr (10)
¢ T
Thus we see that the basic shape of the peak is Gaussian, at least at
sufficiently short times. At longer times the peak shape will change to a
form which is specific to the form of the gel gradient. A more involved
analysis is required to calculate correction terms to Eq. (9) but we here
deal only with consequences implied by the Gaussian term in Eq. (9). The
important feature that emerges from the analysis is that both the position
of the peak, X(¢), and o?(¢) are, in general, no longer proportional to f,
as is the case for a uniform gel. This allows for the possibility that a slowing
in the motion of the peak due to the gel gradient might be compensated for
by a decrease in the peak width. It is this issue which will be addressed
in the following section, in the context of a particular example.

IMPLICATIONS OF THE SOLUTION FOR RESOLVING
POWER

A generic figure indicating the form of the total concentration profile
at a given time is shown in Fig. 1, with /5, (#) being the concentration at
the interpeak minimum and H,..(¢) the concentration of the lower of the
two peaks. At this point we describe our generalization of the analysis of
Aldroubi and Garner which is made possible by the fact that Eq. (9) is
approximately a Gaussian, just as in the absence of a gradient. The first
step in the analysis is to define the function p(f) = Hpax (£)/hmin(?) Which
measures the extent of resolution. Two peaks will be said to be resolved
at time ¢ if p(¢) > 1. We further define omax(#) to be the larger of o, ()
and o,(¢), and the function o as the smaller of the two ratios ci/c, and
c2/c,. Finally, we define the resolution function R(r) by

2
R(1) = %exp[% (Xl((ty)m;(f;z(t)> ]

Aldroubi and Garner have shown that R(?) is a lower bound for p(t), which

(1D
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FIG. 1 A concentration profile with two peaks, showing the definition of Amin(?) and
Hmax(l)~

is to say that
p(1) = R(1) (12)

The desired resolution occurs at a time ¢, which is found as the solution
to the equation

R(t) =1 (13)

The results found by Aldroubi and Garner correspond to setting X;(x) =
w:Et, where w; is a constant mobility, E is the field strength, and at the
same time Setting oZax(#) = 2Dmax?, Where Diax is the greater of the two
diffusion constants D, and D,.

As an example of our formalism applied to a case which is not otherwise
generally solvable, we examine the implications of a linear gel gradient
for which the analytic forms for the diffusion and velocity functions are

D;(x) = D; exp(—\:x) and v(x) = wE exp(—mnix), i=1,2
(14)

where D; and p; are the diffusion constants and mobilities at zero gel
concentration, respectively, E is the applied field, and A; and v, character-
ize the effect of the gradient. The results of Aldroubi and Garner are
recovered by setting A; = m; = 0. The model defined by Eq. (14) general-
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izes an ansatz made by Rodbard and Chrambach (5), although an addi-
tional assumption was made that A; = m;. An exact solution to Eq. (2)
can be found for that special case (6).

Two steps are required in the application of our formalism. The first is
to calculate the functions X,(r) and X,(z) that appear in Eq. (11), and the
second is to calculate o,.x(2). Equation (5) for the choice of v;(x) in Eq.
(14) is

X = pE exp(—mn:X) (15)
This is readily solved for the X(¢):

X,'(I) = -’Tl]_ln(l + ].LiET],'t) (16)

The next step is to calculate the quantities 9;(v) and w;(¢) that appear in
the integrand of the expression for o?(¢) as indicated in Eq. (10). In the
present model these are found to have the forms

D; pEm;

B e S S W X

17)
These are sufficiently simple so that the integral in Eq. (10) can be evalu-

ated in closed form. Let m; = \;/m;. The expression for o?(¢) is then found
to be

2(1) = 2D; 1 — L 18
o) = T DmEn( + mEmi? T+ By 18

It is easily verified that in the limit p;En;t—0, this reduces to the standard
result o?(¢) = 2D;t.

The results in Egs. (16) and (18) are useful in suggesting that there are
choices of parameters for which the use of a gel gradient for the model
defined by Eq. (14) can yield a better resolution than that found in the
absence of a gradient. For this purpose we must compare values of the
resolution function R(¢) both with and without the gradient, since, as is
shown in Ref. 1, the separation time is proportional to the logarithm of
the resolution factor. A further consideration is that one can only assume
that the theoretical results will be valid at short times (in dimensionless
units) since the van Kampen approximation is only accurate at short times
(4). Consequently we first examine the behavior of the exponent that
appears in Eq. (11) in the short-time limit. For definiteness we will take
Omax(f) = 1(2) and define a dimensionless time 7 by

T = w Ent (19)
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so that by short times we will mean that = is small in comparison to 1.
Hence the term that appears in the numerator of the exponent in Eq. (11)
is

2 2 2 2
_ 2 P2y T [ - BT T B2
[X:(D) X,(1)] (l m) 'rﬁ [1 (s — o) T+ ] 20)

to lowest order in 7. The term outside of the brackets is the diffusion-free
result, and the bracketed terms are corrections to this result due to the
nonuniform gel gradient. The analogous expansion of ¢2,.,(¢) as obtained
from Eq. (18) is

D]‘T )\1
fax(D) = 2—— |1 — [1 + 53— 7 + -
Omax(?) p1Em [ ( 2711> T ] @b

It therefore follows that at short times the exponent in Eq. (11), which
for convenience we denote by U(t), can be expanded around the value
found in the absence of a gradient, Uy(¢), as

_ N pdme — pim
U@ = Uo(®) [1 * {21]1 M pami(py — P«z)} T ] (22)

where

(Ml - M2)2E2

Us(t) = ——¢p

(23)
As aresult, the resolution function will initially increase over its gradient-
free value whenever the expression in braces in Eq. (22) is positive. This
will certainly be true when m» > (uf/p3)n:, which is to say that whenever
the width of the slower peak decreases sufficiently quickly relative to
the faster one the resolution function will increase over the zero-gradient
value.

We have demonstrated the possibility of increasing the resolution,
thereby decreasing the time to peak separation through the introduction
of a gel gradient. If the van Kampen approximation is taken seriously at
long times (t > 1), then the resolution function will also exceed its gra-
dient-free value, which is to say, when the effect of the gradient in lessen-
ing the amount of peak spreading is greater than its effect in siowing the
velocity. However, this cannot true in general since the accuracy of the
van Kampen approximation almost always decreases as a function of time,

In conclusion, we have demonstrated that when one measures resolu-
tion in terms of time it is possible that a proper choice of gel gradient can
enhance resolving power. While our mathematical development assumed
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a linear Ferguson plot (Eq. 14) for both diffusion and mobility, it is clear
that the application of an approximate solution to the generalized diffusion
equation is not restricted to such systems. Rather, the essential ingredient
in the analysis is that band spreading is small in comparison to convection
in an appropriately defined sense.
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